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Abstract

T'wo-dimensional convective flows in shallow cavities with adiabatic horizontal boundaries
and driven by differential heating of the two vertical end walls, are studied over a range of
Rayleigh numbers Ri, and numerical results arc obtained for air in the nonlinear end zone on
parallel computing systems, Boundary-layer structure and a small eddy on the streamline field
near the lower cold corner occur at Ri= 6000. At Rizz 40000, flow separation is observed
for the first time in a numerical simulation on the bottom near the cold wall for the end-

zone problem, and a jet-like structure is formed. A detailed tempora evolution of the flow at

1= 40000 is also presented.




Nomenclature

h height of cavity

1length of cavity

L =1/h aspect ratio of cavity

Nu Nusselt number

R Rayleigh number

R, scaled Rayleigh number

7', T non-dimensional temperature
z,z non-dimensional coordinates

u, W non-dimensional velocity components

Greck symbols

B cocflicient, of thermal expansion

¥, non-dimensional stream function
k thermal diffusivity

v kinematic viscosity

o Prandtl number

@, W non-dimensional vorticity function




1 Introduction

Flows driven by lateral heating in shallow cavities are of interest in relation to many applications
in engineering: the production of crystals by the gradieut-freeze technique, cooling systems for
nuclear reactors, and the dispersion of pollutants in river estuaries. Experimental investigations of
cavity flows driven by lateral heating have been reported in [14] [17] and [15]. In genera, these
flows consist of a main circulation in which fluid rises at the hot wall, sinks at the cold wall, and
travels laterally across the intervening core region. Atypical model of convection driven by a latera
therma gradient consists of a two dimensional rectangular cavity with the two verticad end walls
held at different constant temperatures, and the flow structure only depends on three parameters:
Rayleigh number R, Praundtl number u, and aspect ratio 1. (length/height). Numerical studies for
these flows have been carried out by Bejan and Tien [4], and Drummond and Korpela [8].

For a shalow cavity ( L — o0} and Rayleigh numbers R << L the flow is dominated by con-
duction and consists of a Hadley cell driven by the constant horizontal temperature gradient set up
between the end walls. Nonlinear convective eflects first become significant at the ends of the cavity
where the flow is turned when R;= R/l = 0(1). Hart [12] found that for small o the Hadley
cell is susceptible to a variety of instabilities. For Rayleigh numbers greater than a critical value
R = Ry.(0) the parallel core flow is destroyed and replaced by stationary multiple cells [1 O]. The
stationary transverse mode of instability actually forms an integral part of the basic steady motion
in the cavity, appearing as an imperfect bifurcation of the nonlinear flow in the end regions. ‘1 heir
existence was confirmed by numerical simulation of the end-zone flow at low Prandtl numbers in [] 3]
and [19]. Solutions of the appropriate eigenvalue problem ([1 O]) suggest that in the case of thermally

insulated horizontal boundaries this type of behaviour is relevant for Prandtl numbers ¢ < 0.12 and




the ensuing motion is then difficult to treat analytically because nonlinear ‘ ') ts become important
throughout the cavity for It; > Ric(@). For larger Prandtl numbers, the asymptotic structures
of the end-region solution as Rl — oo had been discussed by Danicls[5], and numerical solutions
have been obtained for the end-region flow for several different Prandtl numbers and for a range of
values of the scaled Rayleigh number R/L by Wang and Daniels [20] [21]. As the Rayleigh number
increases, the extent of the end-zone increases and as Rl — co acomplicated asymptotic structure
develops. In the end zone near the cold wall the structure involves the formation of a thermally-
driven vertical boundary layer at the wall which entrains muis and conveys it to the bottom corner
of cavity where it is expelled into the form of a horizontal wall jet studied by Daniels and Gargaro
[6]. As the jet diffuses there is a second stage of evolution where both buoyancy and the effect of an
invisid recirculation in the main part of the end zone come onto play [7]. But there are no numerical
solutions for the end zone for very high Rayleigh numbers and experimenj,have only been done for

small aspect ratios. For time-dependent thermally-driven shallow cavity flows, the temporal evolu-

tion is studied by Daniels and Wang [9] for the nonlinear region where Rayleigh number R based on

cavity height is of the same order of magnitude as the aspect ratio I.¥or a certain class of initia o

conditions the evolution is found to occur over two non-dimcnsional timescales, of order one and of -

order L®. Analytical solutions for the motion throughout most of the cavil ies are found for each of
these timescale'S/Q]d numerical solutions are obtained for the nonlinear time-dependent motion in
the regions near each lateral wall. But for high Rayleigh numbers tirnc-dependent shallow cavity
flow, more work needs to be considered.

The present study investigates high Rayleigh number convective flows in end-zones of cavities

with thermally insulated horizontal surfaces and endwalls held at different fixed temperatures. The



problem formulation, the core solution, and the end-zone problem are given in Section 2. The
numerical scheme and parallel computing techniques for the end-zone problem are discussed in
Section 3. The steady-state solution for different Rayleigh numbers are presented in Section 4 and
in Section 5 the evolution of time-dependent flow is discussed and numerical results arc given for a

high Rayleigh number. Finally, conclusions are outlined in Section 6.

2 Formulation, core solution and end-zone structure

The flow domain is a rectangular cavity of length 1 and height . The end wall a =1 = I/his
maintained at a constant temperatures Al' in excess of that a z:= O and the two horizontal walls
z=0 and z =1 are perfectly insulated. Subject to the Oberbeck-Boussinesq approximation, the

governing equations of the time-dependent motions in non- dimensiona form as

L VPR S /)
o7 (g HI@, ) = Ve Ree &)
V=, (2)
T © o2
5 HI @9 =V (3)

for the vorticity &, stream function ¥ and temperature T, and the Prandtl number o and the

Rayleigh number R arc defined by

3 .
o= Y. p. 9POTH (4)
K KV

where g is the acceleration duc to gravity, and v,k and 8 are the kinematic viscosity, thermal

diffusivity and coefficient of thermal expansion respectively. The boundary conditions on the rigid
walls of the cavity arc

=T7=0 on a=0, (5
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"::——0, T = r =1
Y 5 T=1 on z=1 |, (6)
and the rigid horizontal surfaces are assumed to beinsulating so that
-9y 8T
= e = e = = 7
P 5 = 5a 0 on 2=0,1 , (7

and the above governing equations and boundary conditions are consistent with Gill’s [11] cen-

trosymmetric properties

¥(z,2,1) = Pl - z,1-2,1),
T(x,2,8)=1-T( - z,1-2,1) ( (8)

wle,z,)=w(l-z,1-2 1)

which alow only one haf of the flow domain tobe considered.
The forma asymptotic structure of the steady flow in a shallow cavity where L >> 1 and
Ry=R/IL = O(1) is studied by Daniels et a [10]. Throughout most of the cavity ( the core region)

the flow is dominated by the lateral conduction associated with a Hadley circulation , so that
- 1
7=¢ +L"‘{(£‘§)cl(1i1, o)+ RF@}+0(1.72) (9)

and
%= R{]+ L 'e;(Ry,0)} F'(z) + O(L™?) (lo)

as I = oo, where € = §,

F(z) = 2 1a, e L (11)
120 487 T 727 1440

and Cl (R, ) is a constant contribution determined by matching with solutions near the end wall.

Near the cold wall, the solution adjusts to the boundary conditions (5) in a square zone where




x,2=0(1),
T=L1T(z,2,8) 4

Y= P(z,2,0) +. .. (L = ),

w=wz,z,0)+ -

J

and substitution into (1)- (3) indicates that a steady-state solution of the system

or
oz’

o (5L I, ¥) = Vw -1 Ry

VZ'/) =W,

or

- al 4y — 2/1
6t+J(7,t/) v,

is required. Yrom (5-7) these equations arc ic be solved subject to

oy or _
1,&_..—6—;»»67——0 on z=0,1,
d):-@:T:O on =0 ,
Oz

and to match with the core solution

Y le’"(z), T~2z4cH+ ]{1}7(2) (.’E -3 00)

The core temperature is determined to order 1,-'1 through the matching requirement

Cy = ~2¢

(12)

(13

(14)

(15)

(16)

17)

(18)

(19)

but the value of c itself can only be determined by solving the end-zone problem (13)-(19). At low

Prandtl numbers (o < 0.12), the behaviour (18) is only possible for values of R; less than a critica

value fie ([13], [20]), but otherwise steady-state solutions are expected to exist for any value of 1.

The aitn of the present work is to determine such solutions numerically for high Rayleigh numbers

with a 0>0.12.




3 Numerical scheme and parallel computing techniques for
the end-zone problem

A finite difference method is considered for the system (13)-(19). The explicit Dufort-Frankel scheme
is used for the vorticity equation (13) and the heat equation (15), which has second order accuracy,
and the numerica stability is achieved by a Courant condition. The Arakawa's scheme is for the
convection terms J(w,¥) and J(T',¢), which has been proven suitable for natural convective flow
problems ([1], [19]). ‘I"he Poisson equation (14) is solved by using a fast multigrid method (Brandt
[3]) with a complete V-Cycle scheme on four-level grids and Successive Over-Relaxation as the
smoother.

The outer form (18) at z = oo is handled by a finite truncation of zso that the conditions

oT
Y= R F(z), 5 1 (20)

are applied in the computation domain as z = 2, < oco. It is then necessary to ensure that
T IS chosen sufficiently large that the computed solution does indecd approximate the actual
solution of (13)-(1 9). More details about an e-folding decay length of the end zone are given in
[10] using eigenvalue analysis, which provide a proper scale for choosing the outer boundary of
the computational domain so the paralel core flow is matched by the end zone flow. The whole
computation of the above problem is carried out on powerful paralel computing systems, and an
efficient parallel code is designed for large Rayleigh numbers and aspect ratios by using domain
decomposition techniques. A 2D original fine mesh and its derived coarse meshes are partitioned
into blocks of consecutive columns and distributed onto a linear array of processors (Figure 1). Since

a large aspect ratio is considered, the above partition is optimal as it minirnizes the interprocessor




communication and maximizes the computing on each node. But tRg Aunber of processors that

{Vg ‘/( qdc=
should be used varies according to the problem to be solved. In general, a good parallel code /éan b

s L~ /
should have a balanced computational load on each node, the independent of computing nodes, and
minimize internode communication. Focusing these techniques, a parallel code for the end zone|
problems of natural convective flows has been implemented on the 1 ntel Paragon, Intel Touchstone

Delta, and Cray T3D systems. A detailed description of the numerical scheme and parallel computing

techniques is presented in Wang and Ferraro [22].

4 Steady-state solutions

Numerical solutions are obtained for a range of Rayleigh numbers I2; varying from 6000 to 40000
with o = 0.733 . Different truncation values z., of the end zone near the cold wall have been
used for different Rayleigh numbers. Most computations are carried out by using 16, 32, and 64
processors, and the choice of numbers of processors depends on the grid size used. The time step At
is restricted by spatial and Rayleigh numbers, varying from 10-3 to 10— ® for RI ranging from 6000
to 40000. Since an explicit scheme is used for vorticity and temperature, at each time step only one
linear system derived from the Poisson equation needs to be solved, and a parallel multigrid solver
haa been efficiently used for this problem. For each pair of Ry and u, contour plots of the stream
function, vorticity, and temperature are displayed. Figures 2 — 5 illustrate detailed contour plots
for 6000< R;< 40000, which show the influence of R; on the flow structure. When R; = 6000, a
vertical thermal boundary layer is formed on the cold wall, and a small eddy occurs in the streamline
field near the lower cold corner. At the higher Rayleigh numbers, the vertical boundary layer is much

thinner, and the strongest horizontal temperature gradients are set up near the top corner of the



cold wall, where there is vigorous convection down the wall. " 'ddy gradually moves further down
to the lower cold corner, and at /£y = 25000 more thanone eddy is obscrved near the boundary
arca. Wheu 1 is increased to 40000 , the flow structure becomesmuchmore complicated, and a
jet-like structure is set up. Near the bottom corner of the cold wall, severa small eddies can be

clearly identified. Daniels and Gargaro [6] have discussed the thermal wall jet by using asymptotic

and numerical methods for solving a similar vertical boundary layer equation there they described

Pl

"
\%initial structure of the jet and its subsequent diffusion at large distances downstream for a class of

initial velocity and temperature profiles relevant to intrusion jets observed in certain therma cavity
flows. In Figure 6, a strong vorticity source at the lower corner is aso s},(,wci\ at the contours of
vorticity, and the flow is divergent away from the lower horizontal boundary; a separation of flow
occurs on the bottom near the lower corner. These have been studied experi ment aly as well in finite
cavities by Bejan, Al-homond and Imberger [2], and more recently transient features of the motion
for high Rayleigh numbers in a square cavity have been investigated in [14], [1 7], and [15]. But for
the region R;=R/1 = 0(1), the jet-like structure and the scparation flow arc observed numerically
here for the first time. According to present numerical results, the flow separation should first occur
around 25000 < RI < 40,000. Obviously, at present, thcre are no experiment results available
for this case. Some analytical results will provide a comparison to a certain extent, but a precise
comparison is not available. Further properties of the flow are displayed in Figures 6,7, and 8. In
Figure 6, the temperature indicates two distinct flow regions: the thin boundary layer region and the
parallel core region. The skin friction also shows the complex end region and the core region, The
skin friction curve gives a clear picture of the strong vortici ty source zone and the flow separation

zone. The complication of the flow is also shown in the velocity field. Figure 7 gives the vertical

10
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velocity at various positi?’}c/nf z. The z = 0.0625 (dishe) line) curve displays the upstream and

the downstream flow near the cold wall, which corresponds to the reverse flow on the bottom. The
2 =0.2188 (solid linc) curve shows that theflowis influenced by the multiple-eddy structure, and
that the velocity has multiple local minimum and maximum vaues. At z = 0,5156 (dotted line), the
boundary layer structure and the core structure are clearly distinguished. In Figure 8, horizontal
velocity is displayed at various locations of z. At z = 0.2344 (dashed ling), the eddy structure near
the bottom area of the cavity, and at # = 0.4687 (solid line), the reverse flow at the bottom is visible.
At z = 0.625 (dotted line), the fluid travels to the cold wall through the upper part of the cavity
and travels back to the hot wall through the lower part of the cavity. It is easy to note that the
most complicated flow pattern is located in 0.0 <2< 1.0, and this square area indicates various

flow phenomena.

5 The evolution of time-dependent, flow

Recently, the time dependent flow in thermally-driven cavil ies has attracted wide attention due to
many geophysical and industrial applications. Patterson and Imberger [16] carried out one of the first
investigation of the transient flow in a rectangular cavity, in which a theoretical and computational
investigation identified many of the important length, time and velocity scales of the flow, allowing
a classification of the various possible flow regions. A number of interesting features were reveaed,
including an oscillatory approach to steady state under certain conditions. lvey [14] carried out a
series of experiments designed to test for the existence of the oscillatory behaviour, and evidence
of the oscillations was found. Schladow, Patterson and Street [18] performed more detail numerical

simulations of the Ivey experiment. Their results showed the oscillatory bchaviour in the net Nusselt

1



number, and supported the conclusions of [16]. 1 n contrast, there has been comparatively little
work on the time-evolution of flows in shalow cavities where L >> 1. One of the first rationa
investigations of the evolution of thermally driven shallow cavity flows was carried out by Daniels
and Wang [9]. There they discussed the evolution of the flow with a certain class of initial conditions
both analytically and numerically. But for high Rayleigh number flows more work on the evolution
needs to be considered. ‘I’he present study focuses on a high Rayleigh number evolution flow which
starts from a steady state solution of a lower RI. Numerical results are presented as following.
Figure 9 shows the streamline of #1 = 40,000 with 0::0.733 at a different time level and the
steady state solution of £1 = 25000 was used for an initial condition. 1t is interesting to note that
at an early time £ = 8 x 10°the end zone is filled with a strong nonlincar flow. But with the
increasing of time, the perturbations decay on the horizontal intrusion before the far wall is reached
and eventually die away when the flow approaches the fina steady state. These behaviors appear

to be of similar character to those observed by setting an initial profile of the form

A T Y L A -
7= (1 ],)L+2L’ =0 at 1=0 (21)

with a= 4 discussed in [9]. But here it must be noted that these waves were not generated by either
the flow initiation or the impact of the intrusion, and are due to increasing the Rayleigh number
instantaneously. At t— oo, the waves will not propagate over the length of the cavity but will
decay as they travel horizontaly. In Figure 10, the vertica velocity field at z = 0.5 is illustrated
in time, and it is clear that it is disturbed by the occurrence of perturbations due to the sudden
increase of Rayleigh number and has an oscillatory behaviour around O <z < 3. The influence of
traveling instabilities is obvious at the early time, and this phenomenon disappears as ¢ — oo. But

the properties of the instability of the boundary layer and the flow separation exist during the whole




evolution of flow, and those features are determined by Rayleigh number I¢;, Prandt] number o, and
the aspect ratio L. The initid set up significantly influences flow structure during the transition.
The local Nusselt numbers Nu = %Tx— on the cold wall and on z= 0.5 are illustrated in Figures 11
and 12 respectively. On the cold wall, since the strong temperature gradient is set up at the upper
corner, the most contribution for local Nusselt numbers con 1es from the upper region, and decreases
as z tends to zero. But at x = 0.5, a sharp tempt.rature gradient is set vp at 0.2< z < 0.3, which
exhibits jet-like behaviour in regions at the bottom of the cold wall ( and the top of the hot wall)

where fluid descending (or ascending) in a vertical boundary layer penetrates into the core.

6 Conclusions

in this paper, a detailed numerical study of the end zone in a shallow cavity with insulated horizontal
boundaries has been described for higher Rayleighnumber flows. JVorsteady state flows, a single
eddy near the lower corner occurs around K;~ 6000, and multiple eddies are formed near the
cold wall around H; s~ 25000. A jet-like motion appears when Rayleigh numbers go higher, and
eventually at 1~ 40000 flow separation is observed on the bottom near the cold wall. All of
these features in the end zone indicates that the flow there is connectively-dominated , and that the
boundary layer instability exists at large Rayleigh numbers. ‘I’his boundary layer ingtability is of
fundamental importance in the development of the flow in the next stage. For the time-dependent
flow, strong nonmlinearitics are immediately observed for a relatively large area near the cold wall
after the flow starts from a steady state solution of alower Rayleigh number. Travelling waves are
generated near the cold wall and as 1 — oo these waves decay away and eventually die when the

steady state is reached. In the future we hope to use a fast paralel adaptive composite multigrid

13




method in a parallel computing environment for modelling large Rayleigh number convective flows

in three dimensions, which will give a better approximation of a real flow problem.
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